Course Contents
-
Section 1: Welcome to the course! Here we will help you get started in the best conditions.
-
1 Machine Learning A-Z: AI, Python & R + ChatGPT Prize [2025]02:06
-
2 Machine Learning Demo - Get Excited!04:45
-
3 How to use the ML A-Z folder & Google Colab05:44
-
4 Installing R and R Studio (Mac, Linux & Windows)05:21
-
-
Section 2: -------------------- Part 1: Data Preprocessing --------------------
-
5 The Machine Learning process01:31
-
6 Splitting the data into a Training and Test set02:02
-
7 Feature Scaling06:27
-
-
Section 3: Data Preprocessing in Python
-
8 Getting Started - Step 105:21
-
9 Getting Started - Step 205:21
-
10 Importing the Libraries03:34
-
11 Importing the Dataset - Step 105:13
-
12 Importing the Dataset - Step 204:42
-
13 Importing the Dataset - Step 305:46
-
14 Taking care of Missing Data - Step 105:56
-
15 Taking care of Missing Data - Step 205:58
-
16 Encoding Categorical Data - Step 104:24
-
17 Encoding Categorical Data - Step 205:54
-
18 Encoding Categorical Data - Step 304:39
-
19 Splitting the dataset into the Training set and Test set - Step 103:55
-
20 Splitting the dataset into the Training set and Test set - Step 205:59
-
21 Splitting the dataset into the Training set and Test set - Step 303:52
-
22 Feature Scaling - Step 105:56
-
23 Feature Scaling - Step 204:45
-
24 Feature Scaling - Step 303:48
-
25 Feature Scaling - Step 405:59
-
-
Section 4: Data Preprocessing in R
-
26 Getting Started01:35
-
27 Dataset Description01:57
-
28 Importing the Dataset02:44
-
29 Taking care of Missing Data05:55
-
30 Encoding Categorical Data05:56
-
31 Splitting the dataset into the Training set and Test set - Step 104:38
-
32 Splitting the dataset into the Training set and Test set - Step 204:54
-
33 Feature Scaling - Step 104:25
-
34 Feature Scaling - Step 204:49
-
35 Data Preprocessing Template05:15
-
-
Section 5: -------------------- Part 2: Regression --------------------
-
Section 6: Simple Linear Regression
-
36 Simple Linear Regression Intuition02:22
-
37 Ordinary Least Squares03:17
-
38 Simple Linear Regression in Python - Step 1a05:49
-
39 Simple Linear Regression in Python - Step 1b05:58
-
40 Simple Linear Regression in Python - Step 2a03:53
-
41 Simple Linear Regression in Python - Step 2b03:58
-
42 Simple Linear Regression in Python - Step 304:35
-
43 Simple Linear Regression in Python - Step 4a05:49
-
44 Simple Linear Regression in Python - Step 4b05:57
-
45 Simple Linear Regression in R - Step 104:40
-
46 Simple Linear Regression in R - Step 205:58
-
47 Simple Linear Regression in R - Step 303:38
-
48 Simple Linear Regression in R - Step 4a05:44
-
49 Simple Linear Regression in R - Step 4b05:33
-
50 Simple Linear Regression in R - Step 4c04:37
-
-
Section 7: Multiple Linear Regression
-
51 Dataset + Business Problem Description03:44
-
52 Multiple Linear Regression Intuition02:26
-
53 Assumptions of Linear Regression04:23
-
54 Multiple Linear Regression Intuition - Step 307:21
-
55 Multiple Linear Regression Intuition - Step 402:10
-
56 Understanding the P-Value11:44
-
57 Multiple Linear Regression Intuition - Step 515:41
-
58 Multiple Linear Regression in Python - Step 1a05:54
-
59 Multiple Linear Regression in Python - Step 1b02:35
-
60 Multiple Linear Regression in Python - Step 2a04:28
-
61 Multiple Linear Regression in Python - Step 2b04:43
-
62 Multiple Linear Regression in Python - Step 3a05:52
-
63 Multiple Linear Regression in Python - Step 3b04:32
-
64 Multiple Linear Regression in Python - Step 4a05:38
-
65 Multiple Linear Regression in Python - Step 4b05:34
-
66 Multiple Linear Regression in R - Step 1a03:53
-
67 Multiple Linear Regression in R - Step 1b03:57
-
68 Multiple Linear Regression in R - Step 2a05:22
-
69 Multiple Linear Regression in R - Step 2b04:20
-
70 Multiple Linear Regression in R - Step 304:26
-
71 Multiple Linear Regression in R - Backward Elimination - HOMEWORK !17:51
-
72 Multiple Linear Regression in R - Backward Elimination - Homework Solution07:33
-
-
Section 8: Polynomial Regression
-
73 Polynomial Regression Intuition05:08
-
74 Polynomial Regression in Python - Step 1a04:36
-
75 Polynomial Regression in Python - Step 1b05:55
-
76 Polynomial Regression in Python - Step 2a05:55
-
77 Polynomial Regression in Python - Step 2b05:43
-
78 Polynomial Regression in Python - Step 3a05:57
-
79 Polynomial Regression in Python - Step 3b05:38
-
80 Polynomial Regression in Python - Step 4a03:59
-
81 Polynomial Regression in Python - Step 4b03:59
-
82 Polynomial Regression in R - Step 1a03:45
-
83 Polynomial Regression in R - Step 1b03:39
-
84 Polynomial Regression in R - Step 2a04:40
-
85 Polynomial Regression in R - Step 2b04:55
-
86 Polynomial Regression in R - Step 3a04:59
-
87 Polynomial Regression in R - Step 3b05:31
-
88 Polynomial Regression in R - Step 3c05:42
-
89 Polynomial Regression in R - Step 4a03:58
-
90 Polynomial Regression in R - Step 4b03:47
-
91 R Regression Template - Step 105:57
-
92 R Regression Template - Step 205:25
-
-
Section 9: Support Vector Regression (SVR)
-
93 SVR Intuition (Updated!)08:09
-
94 Heads-up on non-linear SVR03:57
-
95 SVR in Python - Step 1a05:46
-
96 SVR in Python - Step 1b03:29
-
97 SVR in Python - Step 2a05:34
-
98 SVR in Python - Step 2b04:56
-
99 SVR in Python - Step 2c03:31
-
100 SVR in Python - Step 305:57
-
101 SVR in Python - Step 403:46
-
102 SVR in Python - Step 5a03:42
-
103 SVR in Python - Step 5b03:40
-
104 SVR in R - Step 105:58
-
105 SVR in R - Step 204:58
-
-
Section 10: Decision Tree Regression
-
106 Decision Tree Regression Intuition11:06
-
107 Decision Tree Regression in Python - Step 1a04:40
-
108 Decision Tree Regression in Python - Step 1b03:58
-
109 Decision Tree Regression in Python - Step 204:59
-
110 Decision Tree Regression in Python - Step 303:16
-
111 Decision Tree Regression in Python - Step 404:59
-
112 Decision Tree Regression in R - Step 104:55
-
113 Decision Tree Regression in R - Step 205:49
-
114 Decision Tree Regression in R - Step 304:55
-
115 Decision Tree Regression in R - Step 403:50
-
-
Section 11: Random Forest Regression
-
116 Random Forest Regression Intuition06:44
-
117 Random Forest Regression in Python - Step 105:53
-
118 Random Forest Regression in Python - Step 205:55
-
119 Random Forest Regression in R - Step 105:51
-
120 Random Forest Regression in R - Step 205:58
-
121 Random Forest Regression in R - Step 305:26
-
-
Section 12: Evaluating Regression Models Performance
-
122 R-Squared Intuition04:35
-
123 Adjusted R-Squared Intuition05:30
-
-
Section 13: Regression Model Selection in Python
-
124 Preparation of the Regression Code Templates - Step 104:45
-
125 Preparation of the Regression Code Templates - Step 205:59
-
126 Preparation of the Regression Code Templates - Step 303:59
-
127 Preparation of the Regression Code Templates - Step 403:58
-
128 THE ULTIMATE DEMO OF THE POWERFUL REGRESSION CODE TEMPLATES IN ACTION! - STEP 104:47
-
129 THE ULTIMATE DEMO OF THE POWERFUL REGRESSION CODE TEMPLATES IN ACTION! - STEP 204:15
-
-
Section 14: Regression Model Selection in R
-
130 Evaluating Regression Models Performance - Homework's Final Part08:54
-
131 Interpreting Linear Regression Coefficients09:16
-
-
Section 15: -------------------- Part 3: Classification --------------------
-
132 What is Classification?02:30
-
-
Section 16: Logistic Regression
-
133 Logistic Regression Intuition04:55
-
134 Maximum Likelihood03:50
-
135 Logistic Regression in Python - Step 1a05:43
-
136 Logistic Regression in Python - Step 1b03:59
-
137 Logistic Regression in Python - Step 2a05:51
-
138 Logistic Regression in Python - Step 2b05:57
-
139 Logistic Regression in Python - Step 3a03:58
-
140 Logistic Regression in Python - Step 3b03:30
-
141 Logistic Regression in Python - Step 4a05:59
-
142 Logistic Regression in Python - Step 4b01:49
-
143 Logistic Regression in Python - Step 505:59
-
144 Logistic Regression in Python - Step 6a05:52
-
145 Logistic Regression in Python - Step 6b03:33
-
146 Logistic Regression in Python - Step 7a05:54
-
147 Logistic Regression in Python - Step 7b03:44
-
148 Logistic Regression in Python - Step 7c03:19
-
149 Logistic Regression in R - Step 105:58
-
150 Logistic Regression in R - Step 202:58
-
151 Logistic Regression in R - Step 305:23
-
152 Logistic Regression in R - Step 402:48
-
153 Logistic Regression in R - Step 5a05:48
-
154 Logistic Regression in R - Step 5b05:59
-
155 Logistic Regression in R - Step 5c04:59
-
156 R Classification Template05:22
-
-
Section 17: K-Nearest Neighbors (K-NN)
-
157 K-Nearest Neighbor Intuition04:52
-
158 K-NN in Python - Step 105:58
-
159 K-NN in Python - Step 205:51
-
160 K-NN in Python - Step 305:58
-
161 K-NN in R - Step 105:54
-
162 K-NN in R - Step 204:33
-
163 K-NN in R - Step 304:44
-
-
Section 18: Support Vector Machine (SVM)
-
164 SVM Intuition09:49
-
165 SVM in Python - Step 105:58
-
166 SVM in Python - Step 205:53
-
167 SVM in Python - Step 302:39
-
168 SVM in R - Step 105:47
-
169 SVM in R - Step 205:27
-
-
Section 19: Kernel SVM
-
170 Kernel SVM Intuition03:17
-
171 Mapping to a higher dimension07:50
-
172 The Kernel Trick12:20
-
173 Types of Kernel Functions02:24
-
174 Non-Linear Kernel SVR (Advanced)10:55
-
175 Kernel SVM in Python - Step 105:59
-
176 Kernel SVM in Python - Step 205:59
-
177 Kernel SVM in R - Step 105:42
-
178 Kernel SVM in R - Step 205:41
-
179 Kernel SVM in R - Step 304:58
-
-
Section 20: Naive Bayes
-
180 Bayes Theorem20:25
-
181 Naive Bayes Intuition14:03
-
182 Naive Bayes Intuition (Challenge Reveal)06:04
-
183 Naive Bayes Intuition (Extras)09:41
-
184 Naive Bayes in Python - Step 105:56
-
185 Naive Bayes in Python - Step 205:48
-
186 Naive Bayes in Python - Step 301:35
-
187 Naive Bayes in R - Step 104:53
-
188 Naive Bayes in R - Step 204:41
-
189 Naive Bayes in R - Step 303:29
-
-
Section 21: Decision Tree Classification
-
190 Decision Tree Classification Intuition08:08
-
191 Decision Tree Classification in Python - Step 105:59
-
192 Decision Tree Classification in Python - Step 205:56
-
193 Decision Tree Classification in R - Step 105:55
-
194 Decision Tree Classification in R - Step 205:51
-
195 Decision Tree Classification in R - Step 305:42
-
-
Section 22: Random Forest Classification
-
196 Random Forest Classification Intuition04:28
-
197 Random Forest Classification in Python - Step 105:56
-
198 Random Forest Classification in Python - Step 205:56
-
199 Random Forest Classification in R - Step 105:56
-
200 Random Forest Classification in R - Step 205:58
-
201 Random Forest Classification in R - Step 305:26
-
-
Section 23: Classification Model Selection in Python
-
202 Confusion Matrix & Accuracy Ratios04:52
-
203 ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION - STEP 105:51
-
204 ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION - STEP 205:59
-
205 ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION - STEP 305:52
-
206 ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION - STEP 402:38
-
-
Section 24: Evaluating Classification Models Performance
-
207 False Positives & False Negatives07:57
-
208 Accuracy Paradox02:12
-
209 CAP Curve11:16
-
210 CAP Curve Analysis06:19
-
-
Section 25: -------------------- Part 4: Clustering --------------------
-
Section 26: K-Means Clustering
-
211 What is Clustering? (Supervised vs Unsupervised Learning)03:19
-
212 K-Means Clustering Intuition02:37
-
213 The Elbow Method03:59
-
214 K-Means++04:48
-
215 K-Means Clustering in Python - Step 1a04:59
-
216 K-Means Clustering in Python - Step 1b02:58
-
217 K-Means Clustering in Python - Step 2a04:55
-
218 K-Means Clustering in Python - Step 2b05:25
-
219 K-Means Clustering in Python - Step 3a05:59
-
220 K-Means Clustering in Python - Step 3b05:57
-
221 K-Means Clustering in Python - Step 3c03:58
-
222 K-Means Clustering in Python - Step 405:58
-
223 K-Means Clustering in Python - Step 5a05:59
-
224 K-Means Clustering in Python - Step 5b04:57
-
225 K-Means Clustering in Python - Step 5c06:59
-
226 K-Means Clustering in R - Step 105:59
-
227 K-Means Clustering in R - Step 205:39
-
-
Section 27: Hierarchical Clustering
-
228 Hierarchical Clustering Intuition08:47
-
229 Hierarchical Clustering How Dendrograms Work08:47
-
230 Hierarchical Clustering Using Dendrograms11:21
-
231 Hierarchical Clustering in Python - Step 105:58
-
232 Hierarchical Clustering in Python - Step 2a04:52
-
233 Hierarchical Clustering in Python - Step 2b05:58
-
234 Hierarchical Clustering in Python - Step 2c05:59
-
235 Hierarchical Clustering in Python - Step 3a05:45
-
236 Hierarchical Clustering in Python - Step 3b05:42
-
237 Hierarchical Clustering in R - Step 103:45
-
238 Hierarchical Clustering in R - Step 205:23
-
239 Hierarchical Clustering in R - Step 303:18
-
240 Hierarchical Clustering in R - Step 402:45
-
241 Hierarchical Clustering in R - Step 502:33
-
-
Section 28: -------------------- Part 5: Association Rule Learning --------------------
-
Section 29: Apriori
-
242 Apriori Intuition18:13
-
243 Apriori in Python - Step 108:46
-
244 Apriori in Python - Step 217:07
-
245 Apriori in Python - Step 312:48
-
246 Apriori in Python - Step 419:41
-
247 Apriori in R - Step 119:53
-
248 Apriori in R - Step 214:24
-
249 Apriori in R - Step 319:17
-
-
Section 30: Eclat
-
250 Eclat Intuition06:05
-
251 Eclat in Python12:00
-
252 Eclat in R10:09
-
-
Section 31: -------------------- Part 6: Reinforcement Learning --------------------
-
Section 32: Upper Confidence Bound (UCB)
-
253 The Multi-Armed Bandit Problem15:36
-
254 Upper Confidence Bound (UCB) Intuition14:53
-
255 Upper Confidence Bound in Python - Step 112:42
-
256 Upper Confidence Bound in Python - Step 203:51
-
257 Upper Confidence Bound in Python - Step 307:16
-
258 Upper Confidence Bound in Python - Step 415:45
-
259 Upper Confidence Bound in Python - Step 506:12
-
260 Upper Confidence Bound in Python - Step 607:28
-
261 Upper Confidence Bound in Python - Step 708:09
-
262 Upper Confidence Bound in R - Step 113:39
-
263 Upper Confidence Bound in R - Step 215:58
-
264 Upper Confidence Bound in R - Step 317:37
-
265 Upper Confidence Bound in R - Step 403:18
-
-
Section 33: Thompson Sampling
-
266 Thompson Sampling Intuition19:12
-
267 Algorithm Comparison: UCB vs Thompson Sampling08:12
-
268 Thompson Sampling in Python - Step 105:47
-
269 Thompson Sampling in Python - Step 212:19
-
270 Thompson Sampling in Python - Step 314:03
-
271 Thompson Sampling in Python - Step 407:45
-
272 Thompson Sampling in R - Step 119:01
-
273 Thompson Sampling in R - Step 203:27
-
-
Section 34: -------------------- Part 7: Natural Language Processing --------------------
-
274 NLP Intuition03:02
-
275 Types of Natural Language Processing04:11
-
276 Classical vs Deep Learning Models11:22
-
277 Bag-Of-Words Model17:05
-
278 Natural Language Processing in Python - Step 107:13
-
279 Natural Language Processing in Python - Step 206:45
-
280 Natural Language Processing in Python - Step 312:54
-
281 Natural Language Processing in Python - Step 411:00
-
282 Natural Language Processing in Python - Step 517:24
-
283 Natural Language Processing in Python - Step 609:52
-
284 Natural Language Processing in R - Step 116:35
-
285 Natural Language Processing in R - Step 208:39
-
286 Natural Language Processing in R - Step 306:27
-
287 Natural Language Processing in R - Step 402:57
-
288 Natural Language Processing in R - Step 502:05
-
289 Natural Language Processing in R - Step 605:49
-
290 Natural Language Processing in R - Step 703:26
-
291 Natural Language Processing in R - Step 805:20
-
292 Natural Language Processing in R - Step 912:50
-
293 Natural Language Processing in R - Step 1017:31
-
-
Section 35: -------------------- Part 8: Deep Learning --------------------
-
294 What is Deep Learning?12:34
-
-
Section 36: Artificial Neural Networks
-
295 Plan of attack02:51
-
296 The Neuron16:24
-
297 The Activation Function08:29
-
298 How do Neural Networks work?12:47
-
299 How do Neural Networks learn?12:58
-
300 Gradient Descent10:12
-
301 Stochastic Gradient Descent08:44
-
302 Backpropagation05:21
-
303 Business Problem Description04:59
-
304 ANN in Python - Step 110:21
-
305 ANN in Python - Step 218:36
-
306 ANN in Python - Step 314:28
-
307 ANN in Python - Step 411:58
-
308 ANN in Python - Step 516:25
-
309 ANN in R - Step 117:17
-
310 ANN in R - Step 206:30
-
311 ANN in R - Step 312:29
-
312 ANN in R - Step 4 (Last step)14:07
-
-
Section 37: Convolutional Neural Networks
-
313 Plan of attack03:31
-
314 What are convolutional neural networks?15:49
-
315 Step 1 - Convolution Operation16:38
-
316 Step 1(b) - ReLU Layer06:41
-
317 Step 2 - Pooling14:13
-
318 Step 3 - Flattening01:52
-
319 Step 4 - Full Connection19:24
-
320 Summary04:19
-
321 Softmax & Cross-Entropy18:20
-
322 CNN in Python - Step 111:35
-
323 CNN in Python - Step 217:46
-
324 CNN in Python - Step 317:56
-
325 CNN in Python - Step 407:21
-
326 CNN in Python - Step 514:55
-
327 CNN in Python - FINAL DEMO!23:38
-
-
Section 38: -------------------- Part 9: Dimensionality Reduction --------------------
-
Section 39: Principal Component Analysis (PCA)
-
328 Principal Component Analysis (PCA) Intuition03:49
-
329 PCA in Python - Step 116:52
-
330 PCA in Python - Step 205:30
-
331 PCA in R - Step 112:08
-
332 PCA in R - Step 211:22
-
333 PCA in R - Step 313:42
-
-
Section 40: Linear Discriminant Analysis (LDA)
-
334 Linear Discriminant Analysis (LDA) Intuition03:50
-
335 LDA in Python14:52
-
336 LDA in R19:59
-
-
Section 41: Kernel PCA
-
337 Kernel PCA in Python11:03
-
338 Kernel PCA in R20:30
-
-
Section 42: -------------------- Part 10: Model Selection & Boosting --------------------
-
Section 43: Model Selection
-
339 k-Fold Cross-Validation Intuition08:57
-
340 Bias-Variance Tradeoff04:47
-
341 k-Fold Cross Validation in Python13:45
-
342 Grid Search in Python21:56
-
343 k-Fold Cross Validation in R19:29
-
344 Grid Search in R13:59
-
-
Section 44: XGBoost
-
345 XGBoost in Python14:48
-
346 XGBoost in R18:14
-
-
Section 45: Annex: Logistic Regression (Long Explanation)
-
347 Logistic Regression Intuition17:06
-
-
Section 46: Congratulations!! Don't forget your Prize :)
This course is designed to help you master machine learning algorithms using both Python and R. You'll gain hands-on experience from two data science experts, utilizing included code templates. It covers various machine learning techniques, including data preprocessing, regression, classification, clustering, association rule learning, reinforcement learning, natural language processing, and deep learning. It was originally published on udemy and is available Here for free streaming. If you find this course helpful, consider purchasing the original to support the creator!
Course Details
- Instructor: Kirill Eremenko
- Total Sections: 46
- Total Lectures: 387
- Url of original content:https://udemy.com/course/machinelearning/
- Contributor: Suraj Singh
Thank you Suraj Singh for sharing this valuable course.
By the end of the course, you'll be able to:
- Understand and apply various data preprocessing techniques.
- Build and evaluate simple and multiple linear regression models.
- Implement polynomial and support vector regression.
- Use decision tree and random forest regression.
- Understand the principles of logistic regression and K-Nearest Neighbors.
- Implement Support Vector Machines and Kernel SVM.
- Work with Naive Bayes and Decision Tree classification models.
- Apply clustering techniques like K-Means and hierarchical clustering.
- Understand association rule learning using Apriori and Eclat algorithms.
- Apply reinforcement learning algorithms like Upper Confidence Bound (UCB) and Thompson Sampling.
This comprehensive course, Machine Learning A-Z: AI, Python & R + ChatGPT Prize [2024], provides a thorough exploration of machine learning. It starts with an introduction to the course, then moves on to data preprocessing in both Python and R. The course covers regression techniques, progressing from simple to more complex models like Polynomial Regression, SVR, Decision Tree Regression and Random Forest Regression. Classification algorithms are explored including Logistic Regression, KNN, SVM, Kernel SVM, Naive Bayes, and Decision Tree. The course also tackles clustering methodologies like K-Means and Hierarchical Clustering. Topics extend to Association Rule Learning with Apriori and Eclat. Reinforcement Learning is introduced via UCB and Thompson Sampling. The user will also delve into Natural Language Processing and Deep Learning. Furthermore, dimensionality reduction, modeling selection and boosting is also covered.
The course guides individuals to create machine learning algorithms using both programming languages and provides code templates. It is designed for those looking to gain a comprehensive understanding of Machine Learning from both theoretical and practical perspective.
Happy learning!